Fast solution of unsymmetric banded Toeplitz systems by means of spectral factorizations and Woodbury's formula

نویسندگان

  • Alexander N. Malyshev
  • Miloud Sadkane
چکیده

A fast algorithm for solving systems of linear equations with banded Toeplitz matrices is studied. An important step in the algorithm is a novel method for the spectral factorization of the generating function associated with the Toeplitz matrix. The spectral factorization is extracted from the right deflating subspaces corresponding to the eigenvalues inside and outside the open unit disk of a companion matrix pencil constructed from the coefficients of the generating function. The factorization is followed by the Woodbury inversion formula and solution of several banded triangular systems. Stability of the algorithm is discussed and its performance is demonstrated by numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions

We develop a model based on the Dirichlet-compound multinomial distribution (CMD) and Ewens sampling formula to predict the fraction of SNP loci that will appear fixed for alternate alleles between two pooled samples drawn from the same underlying population. We apply this model to next-generation sequencing (NGS) data from Baltic Sea herring recently published by (Corander etal., , Molecular E...

متن کامل

A direct method to solve block banded block Toeplitz systems with non-banded Toeplitz blocks

A fast solution algorithm is proposed for solving block banded block Toeplitz systems with non-banded Toeplitz blocks. The algorithm constructs the circulant transformation of a given Toeplitz system and then by means of the Sherman-Morrison-Woodbury formula transforms its inverse to an inverse of the original matrix. The block circulant matrix with Toeplitz blocks is converted to a block diago...

متن کامل

On Fourier-Toeplitz Methods for Separable Elliptic Problems

Some verv fast numerical methods have been developed in recent years for the solution of elliptic differential equations which allow for separation of variables. In this paper, a Fourier-Toeplitz method is developed as an alternative to the well-known methods of Hockney and Buneman. It is based on the fast Fourier transform and Toeplitz factorizations. The use of Toeplitz factorizations combine...

متن کامل

Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants

We present two new algorithms, ADT and MDT, for solving order-n Toeplitz systems of linear equations Tz = b in time O(n log n) and space O(n). The fastest algorithms previously known, such as Trench’s algorithm, require time Ω(n2) and require that all principal submatrices of T be nonsingular. Our algorithm ADT requires only that T be nonsingular. Both our algorithms for Toeplitz systems are de...

متن کامل

Ldu Factorization Results for Bi-infinite and Semi-infinite Scalar and Block Toeplitz Matrices

ABSTllACT-In this article various existence results for the LDU-factorization of semi-infinite and bi-infinite scalar and block Toeplitz matrices and numerical methods for computing them are reviewed. Moreover, their application to the orthonormal-ization of splines is indicated. Both banded and non-banded Toeplitz matrices are considered. Extensive use is made of matrix polynomial theory. Resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014